If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34x^2+54x+3=0
a = 34; b = 54; c = +3;
Δ = b2-4ac
Δ = 542-4·34·3
Δ = 2508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2508}=\sqrt{4*627}=\sqrt{4}*\sqrt{627}=2\sqrt{627}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-2\sqrt{627}}{2*34}=\frac{-54-2\sqrt{627}}{68} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+2\sqrt{627}}{2*34}=\frac{-54+2\sqrt{627}}{68} $
| |2a-5|=|a-3| | | x-73=15 | | 1+x=-11+4x+x | | 0=-49t^2+25t+.5 | | x(.7)=41293.64 | | 4(9+x)=84 | | 10÷x=2 | | 3x-44=43 | | -61=8-4w+14-w | | (x+4)(x+4+3x)=216 | | 3(6=7x)=165 | | 2(1x-10)=-40 | | 4(-3x+2)=-88 | | -9/10y+3/20=5/15y-14/21 | | 7(6x+5)=287 | | 2n-4n=18 | | 5x=-3-32 | | x-2/x=0.90 | | 6(2-3x)=192 | | 2^x-3=565 | | 2(8+4z/3)=-6 | | 2(7-3x)=192 | | -7=2x+1=11 | | 2(-9-2x)=-34 | | 2(0.5x-(2x+1.3))=4.6 | | 5x+86=6x | | x/3+9=10 | | 11=5z-7 | | 6p=27+3p | | x/7-10=2 | | -3(4x-8)=-2(x+3 | | -7+7x=5x+1 |